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We found the conditions of resonant increase in the amplitude of temperature oscillations of the points of 

a thin heat-conducting rod in the shape of a closed ring with a variable-power heat source moving on its 

surface. 

In [1 ] it is shown that the transfer of a liquid coolant in a closed circulation circuit, containing an immovable 

active zone with a periodically varying heat flux, involves a resonance phenomenon consisting of a sharp increase 

in the amplitude of temperature oscillations for a definite relationship among the oscillation frequency of the heat 

flux in the active zone, the rate of coolant transfer, and the circuit length. In effect, this phenomenon is similar to 

the resonance in mechanical oscillatory systems with coincidence of the natural frequencies and the frequencies of 

disturbing processes. In the problem treated in [1 ], the natural frequency depends on the convective term in the 

heat transfer equation that defines the time of liquid circulation in the circuit and on the boundary condition of 

circuit closure that is tantamount to periodicity of the solution with respect to the coordinate running along the 
circuit. 

It may be assumed that, when similar conditions hold, resonance can also occur in other heat problems, 

including the problem of heat  conduction of solids in the presence of moving sources with the heat release q(x-ut, 

t). However, here the problem must have specific features of its own. We now consider them, taking, as a case in 

point, a thin heat-conducting rod of length L in the shape of a closed ring with a heat source moving on its surface. 

The simplest realization of such a ring is a wheel rim, during whose motion over the bearing surface heat release 

occurs at the contact point. With a small thickness of the ring, a one-dimensional formulation of the problem appears 
to be possible: 

3T 02T 
o-{ - a - -  = q ( x  - u t ,  t )  (1) 

Ox 2 

We introduce new variables ~ = x-ut and r = t, thereby converting to a coordinate system that is stationary 
relative to the source, and then Eq. (1) yields the equation 

OT OT O2T 
- u - a 2 = q , O . 

(2) 

This equation differs from that examined in [1 ] by the presence of the second derivative of T and the need to take 

into account the effect of the thermal diffusivity, and it should be given special consideration. 

With a nonstationary heat flux q(~, r) = qs(~) + qo(~) exp (ioJr), the solution to Eq. (2) is sought in the 
form 

T (~, ~) = T s (~) + 0 (~) exp (ioJr). (3) 

All-Russian Scientific-Research Institute of Transport Engineering, St. Petersburg. Translated from 

Inzhenerno-Fizicheskii Zhurnal, Vol. 65, No. 5, pp. 573-578, November, 1993. Original article submitted November 
26, 1991. 

1062-0125/93/6505-1097512.50 �9 Plenum Publishing Corporation 1097 



Subst i tu t ing Eq. (3) into Eq. (2) and in t roducing the dimensionless  quant i ty  ~ = ~ / L  ( the  symbol  of 
dimensionlessness is hereinafter omitted) instead of ~, for the amplitude of the nonstationary temperature 
component we obtain the equation 

d 2 9  + 2 dO = - Qo - , (4) 

where 

u L )  = - coL z qo L2  

' a ' q o - -  a 

To solve Eq. (4), as in [1 ], we use the condition of solution continuity along the closed circuit rather than 
boundary conditions; however, in contrast to [1 ], not only must the function 0(~) be continuous but also its 
derivative dO/d~. A general solution 0(~) can be found for arbitrary functions Q0(~). The present study, however, 

treats only a single heat flux related to the vicinity of the point ~ = ~*: 

0 for 0 < ~ <  , + A ~ < ~ < I ,  
QO (~) = A ~. ~. (5) 

for _<~___ + A ~ ,  A ~ - ,  0 .  

In this case Eq. (4) admits a solution in elementary functions. Based on this solution and taking, without loss of 
generality, the point ~ = 0 as the observable one, after simple manipulations we derive the following expressions 

for the temperature amplitude: 

A 
I Ol = 2 ~/a 2 + 3 ~ { [C1 exp ( -  41 ~*) + C 2 exp ( -  42 ~*) 17 + 

+ [D 1 exp ( -  Jl 1 ~*) + D 2 exp ( -  4 2 ~*) 12} 1/2 , (6) 

( -  1) k+l Lu cos2~* + ( -  1)k4 sin4~* ] a k - [4 cos4~* +/x ( -  1) k+l sin4~*] b/c 

Ck = 1 - 2 cos 4 exp (-) lk)  + exp ( -  22k) ' 
(7) 

( -  1)/~ [2 cos)~* + # ( -  1) k+l sin~l~*] a k + Lu cos )l~* + 2 ( -  1) k sin4~*l b k 

Dk = 1 - 2 cos ;t exp ( -  '~k) + exp ( -  2~k) ' 
(8) 

~k ( -  1) k+l = # - x / d ,  k = l ,  2;  

a k =  1 - - c o s 2 e x p ( - - 4 k ) ;  b k = s i n 2 e x p ( - ; t k ) ;  (9) 

Using the above expressions we analyze the dependences of 101 on the velocity u of motion of the source, 
its position on the circuit ~*, the oscillation frequency co of the heat flux, and the thermal diffusivity a. These 
dependences are ultimately governed by the parameters a and fl in Eq. (4) or, accordingly, by the parameters 2 

and/~. 
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It should be pointed out that,  with constant a, u, and L, the parameters 2 and/~ are uniquely related to 

co; making allowance for fl = ogL2/a and a = (uL/2a) 2 and converting expression (10) with respect to o9 we arrive 

at (()2) / ()2) 
2 ~  ~ f  22 u L  o 9 = 2 # a  d / 2  u L  (11) 

o ) -  L2 + ~ , L2 -- ~ . 

It is seen from Eq. (11) that for a change in ogE (0, oo) there are corresponding changes in 2E(0,  oo) a n d / t ~  (uL/2a, 
oo). 

For a fixed source (a = 0) with coincident observation and source points (~* = 0 or 1), having regard for 

/~ = 2 = g-flT~ = ~ a ,  after not uncomplicated rearrangements of Eqs. (6)-(10) we obtain a simpler expression 

for the amplitude: 

A( ch -cos  
I 0l = ~ -  2 - 4 c o s ) l c h ; t + c h 2 2 + c o s 2 2  

(12) 

It follows from Eq. (12) that, with an increase in 2 corresponding to an increase in o9, the amplitude I01 monotonically 

decreases exponentially without any singularities. 

In the case of a moving source (a ~ 0), however, the dependence of 101 on o9 in not trivial. Let us assess 

this dependence,  bearing in mind that the thermal diffusivity for ordinary technical materials is relatively small, 

amounting to - 1 cm2/sec. Then,  with a source velocity u of - 1 m/see  and a circuit length L of - 1 m, a may be 

considered large. Setting a >> fl, based on Eqs. (6)-(10) we obtain the following expression for the amplitude at 

~* ;~ 0 (1): 

I cos ;t ~* + sin 2 ~* (13) 

~ 1 - 2 c o s 2 e x p  - 2v~-  + e x p  - ~  

=~a-a exp - 2 x / ~ )  

In the above expression, the function under  the radical in the denominator is important. At values of ;t close to 27rn 

and large values of a ,  the function becomes small in accordance with the estimate ,~2/2a, and 101 increases, 

assuming values determined by the equation 

_A ( 
101rnax - 22 exp - I cos 2~* + sin 2~* , 2 = 2 ~ n .  

(14) 

The  indicated values 2 = 27rn, at which the exponential decrease m 101 with increasing 2 is interrupted, 

may be called resonance ones. At these values of 2, in conformity with Eq. (11), a resonance relation between the 

oscillation frequency of the heat flux of the source and the velocity of its motion is obtained: 

o9o L2 (15) 
2a - 2nn X / (2zr.n) 2 + (uL/2a) 2 . 

When a ~ 0, the simpler resonance condition u -- o9L/2Jrn follows from Eq. (5), which exactly coincides 

with the resonance relation in [1 ]. This is a natural result because, at a = 0, the effect of the second derivative in 

Eq. (2) vanishes and the problem transforms to that examined in [1 ]. In the general case with a ;~ 0, the resonance 

conditions should be refined. Specifically, in accordance with Eq. (15), at a ;~ 0 the resonance frequency o90 itself 

is larger than at a -- 0. With constant u and a, COo decreases with increasing L, but more slightly than at a = 0. 

All these results are the case with large values of a > > ft. 

We performed a numerical analysis of relations (6)-(10) for arbi t rary values of a and fl, and its results are 

given in Fig. 1. It is seen that the resonance sharpness at 2 = 2at rises with increasing a but I 01 max at the resonance 
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Fig. 1. Relative amplitude of the temperature 
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oscillations 1191 A vs the reduced 

oscillation frequency 2 of the heat flux from the source and the square of the 

reduced velocity a of it movement: a) ~* = 0.5, b) ~* = 0 (1); 1) a = 100; 2) 

200; 3) 300; 4) 400; 5) 700; 6) 1000; 7) 1200. 

point at values of ~* sufficiently far from the observation point (~* ;~ 0, ~*;~ 1) is practically independent  of a and, 

at ~* = 0.5, is equal to - 0.025 A, according to Eq. (14). At the same time, the minimal values 101 rain, which occur 

at 2 = n, are strongly dependent  on a. 

The  dependences of 1,91 on 2(co) at ~* = 0 (1) are characterized by certain distinctive features (Fig. lb).  

Firstly, the values of I O I are larger than at intermediate values of ~* and, secondly, not only 1,91 rain but also I O I max 

depend noticeably on a.  The  general character of the dependences of 1191 max and 191 min o n  ~* at a fixed cc is evident 

from the curves in Fig. 2a; initially, as the source point ~* recedes from the observation point ~ = 0, 1191 max and 

1191mi n decrease almost linearly and thereafter,  as the points approach each other on the opposite side (~* = 1), 

they increase abruptly. Mathematically, such nonsymmetry of the dependences in linked with nonsymmetry  of the 

coefficients Ck and Dk in Eq. (6), which invalidates approximation (13) at ~* -- 1. 

At any  fixed values of ~*, a unique dependence of 1191min/1191max on c~ can be constructed. Figure 2b 

exemplifies such dependence for ~* = 0.5; it is a monotonically descending curve, since with increasing c~ the minimal 

value is 1191rain ~ 0. 

It seems possible to utilize the obtained results in analyzing the temperature fields and the corresponding 

strength characteristics of wheels with a heat-conducting rim, moving over a wavy bearing surface with the profile 

Ys = Yso + h sin (2~xs/l).  For this profile, at the contact point there is a variable normal load that at small h is 

defined by the equation: 

2 } 

and, hence, the heat release is E --- 2frNu/D.  With account for Xs = ut, the variable component of the heat release 

is AE = 2~2(h/l)2fr(mgu/D) cos (4nut~l). Since in Eq. (2) q = AE/pCpSAx ,  with the dimensionlessness adopted 

above in Eq. (4) we obtain A = 2zc2(h/l)2fr(rnguL/DSx) a n d  co = 4zcu/l. Substituting co into Eq. (15) and 

remembering that in this case L--ecD, we find the resonance relation 

:~2uD2 
" t /  4~ 2 + 

al = v ~ ' 
(17) 

connecting the wheel diameter  D, the reduced velocity of wheel movement Du/a ,  and the waviness length of the bearing 

surface l. When a --, 0 ~ relation (17) simplifies, taking the form l = 2~D. Thus,  at small a, we draw the practically 

important conclusion that the conditions of resonant increase in the temperature depend weakly on the velocity u; the 

latter affects only the rise in the temperature amplitude in accordance with the value of A. 
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Fig. 2. Maximal 101ma x and minimal 101rain amplitudes of the temperature 

oscillation as functions of the source position ~* on the circuit for a = 500 (a) 

and the ratio 101 min/I 01 max as a function of a for ~*-- 0.5 (b). a: 1) 101 max/A, 

2) 1191 min/A. 

The results obtained can also be applied to measuring facilities for remote noncontact measurement of 

rotation frequencies and thermal diffusivities of the materials of rotating bodies. A measurement procedure with a 

periodic source is the following. Use is made of a concentrated energy source (e.g., a laser beam) with an obturator 

that permits a change in the radiation power with a controllable frequency. The beam is directed to the chosen 

point of the ring ~*. The temperature at a preset point of the ring (~ = 0) is measured with the aid of thermovision 

equipment. In measurements, the frequency co = co is selected at which the maximal value 1Olmax is provided, and 

the rotation velocity u = co*L/2n is determined. Next, the rotation frequency is reduced by half (w** = w*/2) and 

I 01 rain is measured, the ratio l01 rain/101 max is calculated, and from a plot of the type of that presented in Fig. 2b 

the parameter a and, accordingly, the thermal diffusivity a = uL/2v~-d are obtained. 

In conclusion we note that the resonance effect found also occurs in other problems of heat conduction with 

a moving heat source. Preliminary evaluations of the temperature fields in finite-thickness rings and solid disks 

performed on the basis of the heat conduction equation in a cylindrical system of coordinates demonstrate that the 

resonance problem ultimately also reduces to analyzing a one-dimensional equation of the type of Eq. (2) with all 

ensuing results. Therefore, it seems possible to extend the range of applicability of the above method for measuring 

the rotation frequency and the parameter a to heat-conducting bodies of various shapes. 

N O T A T I O N  

T, 0, temperature and its oscillation frequency; a =Z/cp,  Z, c, p,  thermal diffusivity, thermal conductivity, 

specific heat, and density of the rod material; q, qo, (20 = qoL2/a, heat flux, its oscillation frequency, and 

dimensionless oscillation amplitude; x, coordinate running along the rod; L, circuit length; t,~, time; ~ = x-ut, 
coordinate in the moving reference system; u, source velocity; co, wo, oscillation frequency and its resonance value; 

A -- QoA~, source parameter; A~, circuit section with the source; ~*, coordinate of the source point; a -- (uL/2a) 2, 
square of the reduced velocity of the source; fl = a~L2/a, dimensionless oscillation frequency; ;t, 2], 22,/% parameters 

that are functions of a~, L, u, and a; 101, amplitude of temperature oscillations at the observation point; C1, C2, 

D1, D2, constants in solving Eq. (4); S, cross section of the rod; Ys, Xs, coordinates of the bearing surface; h, l, 
height and length of the wave of the bearing surface; m, wheel mass; g, acceleration due to gravity; D, wheel 

diameter; fr, rolling friction. 
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